• Users Online: 52
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 2  |  Issue : 2  |  Page : 76-81

Surgical decompression of the peroneal nerve in the correction of lower limb deformities: A cadaveric study


1 Department of Orthopedics and Traumatology, State Public Hospital (HSPE), São Paulo, Brazil
2 Department of Orthopedics and Traumatology, Institute of Orthopedics and Traumatology, University of São Paulo, SP, Brazil
3 Institute of Orthopedics and Traumatology, LIM 4 - Biomechanics Laboratory, University of São Paulo, SP, Brazil
4 The Paley Institute, St. Mary's Medical Center, West Palm Beach, Florida, USA
5 Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland, USA

Correspondence Address:
Monica Paschoal Nogueira
426 Maracatins Avenue, Apt. 402, São Paulo 04089-000, SP
Brazil
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2455-3719.190708

Rights and Permissions

Background: The peroneal nerve is often stretched during limb lengthening and deformity correction. If the nerve becomes entrapped under the peroneal muscle fascia and/or anterior intermuscular septum, decompression is indicated to treat nerve compromise. Purpose: The purpose of this study was to quantify peroneal nerve tension after varus osteotomy of the proximal tibia and before and after nerve decompression. Methods: A device, which consisted of a force transducer connected perpendicularly by a hook to the nerve and integrated to a personal computer, was able to indirectly measure the nerve rigidity in 14 lower limbs (seven cadaveric specimens). The nerve was neither cut nor disrupted from its anatomic tract by the rigidity measuring device. We measured the amount of peroneal nerve rigidity before varus angulation, after varus angulation of a proximal tibial osteotomy, and after peroneal nerve decompression in the varus angulation position. Results: Peroneal nerve rigidity increased significantly after limb was angulated into varus (P = 0.0002) and was reduced significantly after decompression (P = 0.0003). No significant difference was noted between measurements obtained before varus angulation and measurements obtained after nerve decompression (P = 0.3664). Conclusions: Varus osteotomy of the proximal tibia significantly increases peroneal nerve rigidity. Peroneal nerve rigidity after decompression is not significantly different from nerve rigidity before varus correction. Clinical Relevance: This study provides biomechanical evidence of the efficacy of nerve decompression in two specific anatomic sites (peroneus longus muscle fascia and lateral, intermuscular septum) in relieving the increase in peroneal nerve rigidity that occurs in association with procedures that stretch the nerve such as limb lengthening and deformity correction.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2965    
    Printed174    
    Emailed0    
    PDF Downloaded17    
    Comments [Add]    

Recommend this journal